Mark Scheme 4766 June 2006

Q1			
(i)		G1 Labelled linear	
scales			

Q3 (i)	$\begin{aligned} & \mathrm{P}(X=1)=7 k, \mathrm{P}(X=2)=12 k, \mathrm{P}(X=3)=15 k, \mathrm{P}(X=4)=16 k \\ & 50 k=1 \text { so } k=1 / 50 \end{aligned}$	M1 for addition of four multiples of k A1 ANSWER GIVEN	2
(ii)	$\begin{aligned} & \mathrm{E}(X)=1 \times 7 k+2 \times 12 k+3 \times 15 k+4 \times 16 k=140 k=2.8 \\ & \text { OR } \mathrm{E}(X)=1 \times{ }^{7} / 50+2 \times{ }^{12} / 50+3 \times 15 / 50+4 \times{ }^{16} / 50={ }^{140} / 50= \\ & 2.8 \mathrm{oe} \end{aligned} \begin{aligned} & \operatorname{Var}(X)=1 \times 7 k+4 \times 12 k+9 \times 15 k+16 \times 16 k-7.84=1.08 \\ & \text { OR } \operatorname{Var}(X)=1 \times 7 / 50+4 \times 12 / 50+9 \times{ }^{15} / 50+16 \times 16 / 50-7.84 \\ & \quad=8.92-7.84=1.08 \end{aligned}$	M1 for $\operatorname{\Sigma xp}$ (at least 3 terms correct) A1 CAO M1 $\Sigma x^{2} p$ (at least 3 terms correct) M1dep for - their $\mathrm{E}(X$ $)^{2}$ NB provided $\operatorname{Var}(X)$ >0 A1 FT their $\mathrm{E}(X)$	5
		TOTAL	7
Q4 (i)	$4 \times 5 \times 3=60$	M1 for $4 \times 5 \times 3$ A1 CAO	2
(ii)	(A) $\binom{4}{2}=6$ (B) $\binom{4}{2}\binom{5}{2}\binom{3}{2}=180$	B1 ANSWER GIVEN B1 CAO	2
(iii)	(A) $1 / 5$ (B) $\frac{3}{4} \times \frac{4}{5} \times \frac{2}{3}=\frac{2}{5}$	B1 CAO M1 for $\frac{3}{4} \times \frac{4}{5} \times \frac{2}{3}$ A1	3
		TOTAL	7
Q5 (i)	$\mathrm{P}(X=2)=\binom{3}{2} \times 0.87^{2} \times 0.13=0.2952$	M1 $0.87^{2} \times 0.13$ M1 $\binom{3}{2} \times p^{2} q$ with $p+q=1$ A1 CAO	3
(ii)	In 50 throws expect $50(0.2952)=14.76$ times	B1 FT	1
(iii)	P (two 20's twice) $=\binom{4}{2} \times 0.2952^{2} \times 0.7048^{2}=0.2597$	M1 $0.2952^{2} \times 0.7048^{2}$ A1 FT their 0.2952	2
		TOTAL	6

Q6 (i)		G1 for left hand set of branches fully correct including labels and probabilities G1 for right hand set of branches fully correct	2
(ii)	$\mathrm{P}($ test is positive $)=(0.9)(0.95)+(0.1)(0.2)=0.875$	M1 Two correct pairs added A1 CAO	2
(iii)	$\mathrm{P}($ test is correct $)=(0.9)(0.95)+(0.1)(0.8)=0.935$	M1 Two correct pairs added A1 CAO	2
(iv)	$\begin{aligned} & \text { P (Genuine\|Positive) } \\ & =0.855 / 0.875 \\ & =0.977 \end{aligned}$	M1 Numerator M1 Denominator A1 CAO	3
(v)	$\mathrm{P}($ Fake Negative $)=0.08 / 0.125=0.64$	M1 Numerator M1 Denominator A1 CAO	3
(vi)	EITHER: A positive test means that the painting is almost certain to be genuine so no need for a further test. However, more than a third of those paintings with a negative result are genuine so a further test is needed. NOTE: Allow sensible alternative answers	E1FT E1FT	2
(vii)	$\begin{aligned} P \text { (all } 3 \text { genuine }) & =(0.9 \times 0.05 \times 0.96)^{3} \\ & =(0.045 \times 0.96)^{3} \\ & =(0.0432)^{3} \\ & =0.0000806 \end{aligned}$	M1 for 0.9×0.05 (=0.045) M1 for complete correct triple product M1indep for cubing A1 CAO	4
		TOTAL	18

Q7 (i)	$x \sim \mathrm{~B}(20,0.1)$ (A) $\quad \mathrm{P}(\boldsymbol{X}=1)=\binom{20}{1} \times 0.1 \times 0.9^{19}=0.2702$ OR from tables $\quad 0.3917-0.1216=0.2701$ (B) $\mathrm{P}(\boldsymbol{X} \geq 1)=1-0.1216=0.8784$	M1 0.1×0.9^{19} M1 $\binom{20}{1} \times p q^{19}$ A1 CAO OR: M2 for 0.3917 0.1216 A1 CAO M1 $\mathrm{P}(X=0)$ provided that $P(X \geq 1)=1-P(X \leq 1)$ not seen M1 1- $\mathrm{P}(\mathrm{X}=0)$ A1 CAO	3 3
(ii)	EITHER: $1-0.9^{n} \geq 0.8$ $0.9^{n} \leq 0.2$ Minimum $n=16$ OR (using trial and improvement): Trial with 0.9^{15} or 0.9^{16} or 0.9^{17} $1-0.9^{15}=0.7941<0.8$ and $1-0.9^{16}=0.8147>0.8$ Minimum $n=16$ NOTE: $n=16$ unsupported scores SC1 only	M1 for 0.9^{n} M1 for inequality A1 CAO M1 M1 A1 CAO	3
(iii)	(A) Let $p=$ probability of a randomly selected rock containing a fossil (for population) $\begin{aligned} & \mathrm{H}_{0}: p=0.1 \\ & \mathrm{H}_{1}: p<0.1 \end{aligned}$ $\begin{aligned} & (\boldsymbol{B}) \quad \text { Let } X \sim \mathrm{~B}(30,0.1) \\ & \mathrm{P}(X \leq 0)=0.0424<5 \% \\ & \mathrm{P}(X \leq 1)=0.0424+0.1413=0.1837>5 \% \end{aligned}$ So critical region consists only of 0 . (C) 2 does not lie in the critical region. So there is insufficient evidence to reject the null hypothesis and we conclude that it seems that 10% of rocks in this area contain fossils.	B1 for definition of p B 1 for H_{0} B1 for H_{1} M1 for attempt to find $\mathrm{P}(X \leq 0)$ or $\mathrm{P}(X \leq 1)$ using binomial M1 for both attempted M1 for comparison of either of the above with 5\% A1 for critical region dep on both comparisons (NB Answer given) M1 for comparison A1 for conclusion in context	3 4 4 2
		TOTAL	18

